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ABSTRACT

Many astrophysical systems involve turbulent electron-positron
plasmas. Linear kinetic theory of electromagnetic fluctuations in homogeneous,
magnetized, collisionless, non-relativistic electron-positron plasmas predicts
two lightly damped modes propagate at relatively long wavelengths: an Alfvén-
like mode with dispersion w, = kjv4 and a magnetosonic-like mode with disper-
sion w, ~ kv, if B, << 1. Here v, is the Alfvén speed in an electron-positron
plasma and || refers to the direction parallel to the background magnetic field B,,.
The dissipation wavenumber k; is defined as the value of k£ at which the damping
rate equals the rate of energy transfer by the turbulent cascade. Using linear
theory and a basic turbulent cascade model, k; is predicted for turbulence at
propagation quasi-parallel to B,, for quasi-perpendicular magnetosonic-like tur-
bulence, and for quasi-perpendicular Alfvén-like turbulence. In the latter case,
the model predicts that an increase in the turbulent energy should correspond to
an increase in k4. The assumptions and predictions of the model may be tested

by particle-in-cell simulations.

Subject headings: turbulence; electron-positron plasmas; dissipation
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1. Introduction

Electron-positron plasmas constitute important elements of many different
astrophysical systems. These include gamma-ray burst sources [(Ramirez-Ruiz
et al. 2007; Chang et al. 2008) and references therein|, pulsars and their winds
(Coroniti 1990; Kazimura et al. 1998), and extragalactic jets [For example,
see references in Marscher et al. (2007)]. Although the large-amplitude
magnetic fluctuations characteristic of turbulence cannot be directly observed
in astrophysical plasmas, in situ spacecraft observations have demonstrated that
plasma turbulence is ubiquitous throughout the plasmas of the solar wind and
observable planetary magnetospheres. Thus it is likely that turbulence will be

found in many astrophysical plasmas as well.

The usual picture of turbulence is that it is driven by field perturbations
at very long wavelengths, followed by wave-wave interactions which cause
the forward cascade of fluctuation energy to successively shorter wavelengths.
Finally, at sufficiently short wavelengths, dissipation quenches the cascade
and the energy goes into heating of the fluid or plasma. At relatively long
wavelengths fluid models such as magnetohydrodynamics (MHD) (Biskamp
2003; Oughton & Matthaeus 2005) or electron magnetohydrodynamics (EMHD)
(Biskamp et al. 1999; Dastgeer et al. 2000; Cho & Lazarian 2004) are often used

to study the turbulent cascade.

However, as fluctuation wavelengths become shorter, wave-particle
interactions in collisionless plasmas generally become stronger, dissipation
becomes important, and fluid models fail. As discussed below, if we define
the dissipation wavenumber k; as marking the onset of significant damping,

then at k£ > k,; kinetic theories or simulations are necessary to provide a
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complete description of turbulence in collisionless plasmas. In particular,
kinetic representations are necessary to learn how the energy in turbulent
fluctuations is transferred among the various species of a collisionless plasma.
Hence, understanding turbulent dissipation is essential for constructing a
complete physical picture of how the directed energy in astrophysical jets and
flows is converted first to the fluctuating field energy of turbulence and then

ultimately to plasma energy.

Particle-in-cell (PIC) simulations, which represent all plasma species as
super-particles, offer the potential for fully kinetic solutions to the challenging
problem of homogeneous turbulence in collisionless plasmas. Recent PIC
simulations have begun to address not only turbulence itself (Gary et al. 2008;
Saito et al. 2008), but also its role in astrophysical reconnection (Bessho &
Bhattacharjee 2007; Daughton & Karimabadi 2007; Swisdak et al. 2008; Yin et
al. 2008) and shocks (Chang et al. 2008).

A second reason to consider electron-positron plasmas is that they facilitate
PIC simulation studies of fundamental kinetic processes in collisionless plasmas.
Current limitations on the PIC simulation method are not due to any analytic
model approximations; rather such computations are constrained by practical
limits on particle number, cell size, and computing resources. Because
electron-positron PIC calculations are computationally much less demanding
than similar calculations in electron-proton plasmas, simulations of the former
type can be run to longer times and/or to higher dimensionality than those
of the latter. Furthermore, computations of turbulence in electron-positron plasmas,
like simulations of whistler turbulence (Gary et al. 2008; Saito et al. 2008), need address

only wavelengths which scale with ¢/w,, the electron inertial length, and are not required
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to embrace the disparate length scales of the electron and proton inertial lengths. Thus
electron-positron computations require much smaller system sizes than those needed to
capture the full range of kinetic physics in electron-proton plasmas, and can be powerful

tools for testing predictions drawn from fundamental theories.

There are two weakly damped electromagnetic modes in homogeneous, magnetized,
collisionless electron-positron plasmas: Alfvén-like fluctuations with dispersion
w, = kjvs and magnetosonic-like fluctuations with dispersion w, ~ kv, at 3. <<
1. Here the Alfvén speed in an electron-positron plasma is 94 = B,/+/8mn.m. where the
subscripts e and p refer to electron and positron, respectively. The two modes have identical
dispersion at parallel propagation (Iwamoto 1993). In particular both modes have phase
speeds w,/k which monotonically decrease with increasing wavenumber, so that neither

mode exhibits whistler-like dispersion with w ~ k2.

Using linear kinetic theory and a basic turbulence model, Gary & Karimabadi (2009)
predicted certain properties of homogeneous turbulence in electron-positron plasmas. Their
predictions include: (i) The forward cascade to shorter wavelengths should preferentially
drive fluctuations in directions perpendicular to B,. (ii) Magnetosonic-like turbulence
should cascade faster and become more anisotropic than Alfvén-like turbulence. (iii) The
anisotropic character of the turbulence implies that both modes should generate modest
values of fluctuating electric fields parallel to B,; it follows, therefore, that these fields

should lead to parallel heating of both electrons and positrons.

This manuscript follows Gary & Karimabadi (2009) in laying the
groundwork for computational studies of turbulence in electron-positron
plasmas. We use linear kinetic theory to derive some damping properties of the Alfvén-like
and magnetosonic-like fluctuations, and we use these properties in a basic model of

cascading plasma turbulence to predict scalings of dissipation wavenumbers of turbulence
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at both quasi-parallel (k; << k) and quasi-perpendicular (kj << k) propagation.

We denote the jth species plasma frequency as w; = 47mje§/mj, the jth species
cyclotron frequency as Q; = e;B,/mjc, and fB); = 8mn;kgT;/B:. Solutions to the linear
dispersion equation are in terms of a wavevector k with real components and a complex
frequency w = w, + iy. The symbols || and L denote directions parallel and perpendicular,
respectively, to the background magnetic field B,. We define 6, the angle of mode

propagation, by k - B, = kB, cos(0).

2. Linear Theory

This section describes solutions of the linear kinetic dispersion equation for
electromagnetic fluctuations in homogeneous, magnetized, collisionless, non-relativistic
electron-positron plasmas. The dimensionless parameters characterizing the zeroth order
background plasma are w, /|| = 2.5, T, = T,,, T\ ; = T);, and m, = m,. Our results are
essentially independent of w,/|€2.| as long as this parameter is much greater than unity. We
choose w, /|| = 2.5 for our calculations because PIC simulations run most efficiently when
we/|Qe| is of order unity. We assume the zeroth order velocity distribution of each species
is a Maxwellian, and numerically solve the full electromagnetic dispersion equation (Gary

1993) without analytic approximation.

Linear dispersion properties of the Alfvén-like and magnetosonic-like modes are
illustrated in Gary & Karimabadi (2009). At parallel propagation, the Alfvén-like
mode is left-hand circularly polarized, and the magnetosonic-like mode is right-
hand circularly polarized. At k x B, = 0, the two modes have identical dispersion
and damping (Iwamoto 1993), with essentially zero damping at kjc/w, << 1. At shorter

wavelengths, the cyclotron resonances become effective (positron cyclotron resonance for the
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Alfvén-like mode and electron cyclotron resonance for the magnetosonic-like mode), causing
w, to become dispersive, and triggering the onset of cyclotron damping. We compute linear

damping rates for both modes at k x B, = 0 and fit the numerical results to the expression

= —mlexp(—4m§w§/kﬁ02) (1)
On the domain 0.01 < 3, < 8 we obtain
my = 0.59/3%-0%

and

my = 0.37/3%%

As for the case of Alfvén-cyclotron damping in electron-proton plasmas (Gary & Borovsky
2004), this exponential wavenumber dependence of (k) represents a prompt onset of
cyclotron damping with increasing wavenumber. This stands in contrast to the more
gradual, power-law increase in damping due to the Landau resonance at oblique propagation,

as illustrated by Equation (2) below.

At propagation oblique to B,, the properties of the two modes diverge; the Alfvén-like
mode satisfies w, = k4 at long wavelengths, whereas the magnetosonic-like mode is more
nearly isotropic with w, ~ kv4 at kc¢/w, << 1 and 3, << 1. If k; # 0, both modes admit

non-zero 0 F) (Gary & Karimabadi 2009), so Landau damping becomes important. This

2

implies that the damping rate should be proportional to the factor exp(—wf/?kﬁvj) where

j represents whichever species is Landau resonant with the mode under consideration.

Alfvén-like modes at oblique propagation are analogues of kinetic Alfvén waves
in electron-proton plasmas [e.g., Gary & Borovsky (2004, 2008)]. They may have
relatively strong damping at moderately oblique angles of propagation, but, as

illustrated in Figure 1, Landau damping approaches zero as k approaches the
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perpendicular. In the long-wavelength limit, we find that, for 0.025 < 3, < 8.0,

ICLC>2 |k|||C

We We

i N
|Qe| - A(ﬁe) ( (2)

where A is a monotonically increasing function of 3., but is independent of § at least

over the range 60° < # < 85°.

Figure 2 shows A(f,) which, on the range 0.04 < 3, < 10.0, can be approximately fit

by the expression
m
A(fe) ~ (mlﬁ;/z + —55/22> exp(—1/20,)

with m; ~ 0.23 and my ~ 0.014. The exponential factor of this expression derives from the

Landau damping factor exp(—w; /2k{v?) with w, =~ kjva.

For magnetosonic-like fluctuations at oblique propagation, we insert the low-f3

dispersion relation w, ~ k74 into the Landau damping factor exp(—w;/2k{v7) so that

-1
7 eXp (2560052(9)>

Using this to guide our analysis, we find that the damping rate of magnetosonic-like
fluctuations in the long-wavelength limit over 0.05 < 3, < 0.25 can be fit to the

expression

v ke\ . o -1

~ —Ans(Be) | — 7 — 3
= =) (55) sint0) exp (5 )
where A,,;(0.) is fully independent of # and is approximately 0.4 for the stated

range of .. The range of 3. is limited here because our approximation of
w, = kv, becomes invalid at (3, > 0.25, and because the exponential factor

makes the damping rate physically insignificant at (5, < 0.05.

The 1/cos*(#) factor in the argument of the exponential is critical; at low 3,
the magnetosonic-like fluctuations have very high phase speeds at quasi-perpendicular

propagation so that the Landau resonance and its associated damping become very weak.
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Figure 1 illustrates this point by plotting the damping rate of the magnetosonic-like mode
at long wavelength as a function of #; although damping is appreciable at 10° < 6 < 35°,

there is zero damping at both strictly parallel and quasi-perpendicular propagation. Thus

for both the Alfvén-like and the magnetosonic-like modes, if wave-wave interactions permit
cascades to operate, there are separate channels for those cascades at quasi-parallel and

quasi-perpendicular propagation.

Figure 3 illustrates two contours of constant damping rate for each of the two modes.
The Alfvén-like contours are similar to the contours for Alfvénic modes in electron-proton
plasmas (Gary & Borovsky 2004). At quasi-parallel propagation the contours are closely
spaced and essentially vertical, indicating that damping is relatively independent of k£, and
that damping has a rapid onset as a function of k), properties which are characteristic of
cyclotron damping. At quasi-perpendicular propagation, the contours of the Alfvén-like
mode are more widely spaced, consistent with the more gradual wavenumber dependence
of Equation (2). The contours of constant damping for the magnetosonic-like mode also
exhibit the characteristics of cyclotron damping at quasi-parallel propagation. But for
this mode the contour separation remains relatively close as 6 increases, indicating that
the rapid onset of damping with increasing wavenumber persists to quasi-perpendicular

propagation.

3. Scaling Relations for Turbulence

In this section we use the linear theory results derived in Section II in conjunction
with a basic model of the turbulent cascade to derive scaling relations for dissipation

wavenumbers of homogeneous turbulence in electron-positron plasmas. We define the
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dimensionless energy density of the fluctuating magnetic field, &, as

B (k)|?
&= 7| B(2)| dk (4)
so that the rate of magnetic energy loss due to damping of fluctuations in a collisionless

plasma is

o 6B (k)2

o
where (k) is the fluctuation damping rate.

The model which underlies our calculations is as follows. We assume a steady-state
condition in which fluctuating energy is imposed on the system at long wavelengths
characterized by a wavenumber k,, and then cascades through lightly damped modes
down to strong dissipation at relatively short wavelengths characterized by a dissipation
wavenumber k,;. We further assume that, if the cascade rate is fast compared to the
damping rate, the cascade leads to spectra with power-law dependence on the wavenumber.
If, however, damping becomes as fast as the cascade, then, as in Li et al. (2001) power-law
spectra can no longer be maintained, and at k£ > k,; the spectra decrease more rapidly than

any power law of the wavenumber.

For example, at quasi-perpendicular propagation we assume the magnetic spectrum

can be approximated as

PBOOP _ J 5 (B5) 7 ik, <y < kg and 0< Jky| < Aky;
B D ®)

0 0, otherwise.

where Ak << k4 because the turbulence is quasi-perpendicular. If we use Equation (5)

in Equation (4), we obtain

Ak kLa e
E = 4re < |C) / <klc) d (klc) (6)
We ko We We

Our model is based upon the injection of fluctuating magnetic energy at long wavelengths

of scale 27 /k,, so physically we expect the contribution from the k, term to dominate the
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integrand, implying that o > 2 and
— )& [ Akyc\ ! o
(2

Based upon our linear theory results, we assume that turbulence in homogeneous

electron-positron plasmas may be separated into three categories: (a) all modes at quasi-
parallel propagation, (b) magnetosonic-like turbulence at quasi-perpendicular propagation,
and (c) Alfvén-like turbulence at quasi-perpendicular propagation. We further assume that
the ensembles of turbulent fluctuations in each of these three catgories are only weakly

coupled and that they may be analyzed as if they were independent of each other.

Consider quasi-perpendicular Alfvén-like turbulence with damping as given by Equation

(2). We suppose the fluctuating field spectrum is given by Equation (5), and it follows that

o Akje\® [F2 (ke\*™  (kyc
a_—47rA(ﬁe)|Qe|e<w—e> / <w> d<we> (8)

Then, to fulfill the scenario of a forward cascade toward increasing dissipation, the integrand

must be an increasing function of £, so that a < 3.

Thus, in this model, we conclude that power spectra of Alfvén-like turbulence
at quasi-perpendicular propagation should satisfy 2 < a < 3. For simulations in a
two-dimensional system in which %, corresponds to a single Cartesian coordinate, this

condition becomes 1 < «a < 2.

At quasi-parallel propagation, and for magnetosonic-like fluctuations at quasi-
perpendicular propagation, we find no similar upper bounds on the spectral power law «.
This is because the damping rate is essentially zero at long wavelengths in these two cases,

and there is essentially no dissipation until £ > k.

Collisionless damping typically increases with increasing wavenumber, as in Figure 3,

so in our model we assume that changes in the spectral properties occur at wavenumbers
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corresponding to the condition of strong damping:

()

where T,qscade 15 the inverse rate of fluctuating magnetic energy transfer in the turbulent

cascade; in general this quantity is a function of plasma parameters as well as the turbulence
parameters k and [6B|?/B2. Equation (9) defines the dissipation wavenumbers k4 which

should be different for each of the three categories.

Consider category (a): both modes at quasi-parallel propagation. As discussed above,
damping at k x B, = 0 is essentially zero at kjc/w, << 1, but then becomes appreciable
with a relatively small further increase in the parallel wavenumber. This implies that
kjq should be essentially independent of the amplitude of the turbulent fluctuations and
the wavenumber properties of the spectrum, but may be derived directly by considering
variations in v/|€2| and §, in linear dispersion theory. Figure 4 illustrates k, for both
modes as a function of 3, for two values of the damping rate. These results are similar to
those for the parallel dissipation wavenumber for Alfvén-cyclotron fluctuations [Fig. 3 of

(Gary & Borovsky 2004)]; for the parameters shown here the approximate scaling is
kjjac/we =~ 0.3/3%3 (10)

or kjqve/|Qe| ~ 0.22621°,

For category (b), magnetosonic-like fluctuations at quasi-perpendicular propagation,
a similar argument for the dissipation wavenumber applies, although it must be extended
to two-dimensional wavevectors. The linear theory results of Section II and (Gary &
Karimabadi 2009) for this mode demonstrate that for sufficiently large values of § and
kc/w, not too large, v ~ 0. However, as for cyclotron damping at parallel propagation,
a relatively small increase in k at fixed f yields a sudden onset of damping. Thus, as

we argued for modes at parallel propagation, the spectral breakpoint should be relatively
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independent of the properties of the spectrum, and k4 should follow from the choice of
/||, Be, and 0 in linear dispersion theory. So, if we consider only &k, ¢/w, > 1.0 for the

two magnetosonic-like threshold curves in Figure 3, we find fits of the form

_kaLdC/we )

tan(0) (11)

kyqc/we = miexp (

with my ~ 3 and my ~ 2.1 for the two values of /|| illustrated there. More generally,

these two fitting parameters are functions not only of the dimensionless damping rate, but
also depend upon f,. If simulations of turbulence demonstrate that Equation (11) provides
useful insight into quasi-perpendicular magnetosonic-like turbulence, quantification of these

parametric dependences would be a worthwhile exercise.

Qualitatively, as the angle of propagation for magnetosonic-like turbulence approaches
the perpendicular, the dissipation wavenumber £, becomes larger, but the dissipation-free
channel for the turbulent cascade becomes narrower in k). In real plasmas this process
cannot continue to arbitrarily large &, c/w., because the gradually diminishing k| associated
with more nearly perpendicular # demands homogeneity on gradually increasing scales
parallel to B,. Thus the inevitable inhomogeneities of physical plasmas (or finite system

sizes in computational plasmas) will eventually terminate this type of cascade process.

Third, we examine the dissipation wavenumber for category (c): the quasi-perpendicular
cascade of Alfvén-like turbulence. As Figure 3 illustrates, the dissipation-free channel for
these fluctuations is much narrower than that for quasi-perpendicular magnetosonic-like
turbulence. But another difference between the two types of cascade is that the dissipation
scale for quasi-perpendicular Alfvén-like turbulence is a function of the energy density &.
In Equation (9), we use Equation (2) for the damping rate, and Equation (5) of (Gary &

Karimabadi 2009) for the cascade rate. Then

() (- L) -
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If we multiply both sides of Equation (12) by %, invoke Equation (5), and integrate over

deC a72N 3\/56 AkHC 2
(2) =it ()

kLd [6\/5 (a—2)E <Ak|c>3] e

K, then

or, using Equation (7),

(13)

k| 272 A \ w

Equation (13) is physically plausible. It is consistent with our expectation that an
increase in the total fluctuating energy density should push the turbulent spectrum to
larger values of the dissipation wavenumber. Similarly, the inverse relationship between k4
and Ak is qualitatively consistent with the linear theory results of Figure 3. Finally, the
smaller the system size (i.e., the larger k,), the harder the turbulence is driven, and thus

the larger k| 4 should be, again consistent with Equation (13).

To illustrate, we choose av = 8/3, £ = 0.10, Akjc/w, = 0.30, and 3, = 0.10 which
implies A = 0.02. Then k,4/k, ~ 137. So our model predicts that, for a simulation in
which the driving fluctuations have k,c/w, = 0.02, the quasi-perpendicular cascade of
Alfven-like turbulence should carry fluctuation energy out to a relatively short wavelength
breakpoint at k| 4¢/w, ~ 2.7. Note that this predicted penetration of the turbulence to short
wavelengths is due to our choice of f, << 1. At 3, = 1.0, if we keep all other parameters
the same, k4/k, is reduced by more than an order of magnitude, and the turbulence must
be driven harder (i.e., a larger value of £ and/or a larger value of k,c/we) to enable the

turbulence to attain such short wavelengths.

4. Conclusions

In order to establish a theoretical foundation for future particle-in-cell

simulations of astrophysical pair plasmas, we have examined linear kinetic theory for
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electromagnetic fluctuations in homogeneous, magnetized, collisionless, non-relativistic
electron-positron plasmas. We have used the resulting dispersion properties with a basic
cascade model to predict dissipation wavenumbers for three categories of turbulence: (a)
both types of modes at quasi-parallel propagation, (b) quasi-perpendicular magnetosonic-
like turbulence, and (c¢) quasi-perpendicular Alfvén-like turbulence. For case (a) we predict
that the onset of cyclotron dissipation corresponding to a ”breakpoint” in reduced spectra
should arise at kjgc/w. ~ 0.3/8Y/3, independent of the total energy in the turbulence.
For category (b), we found that the disspation wavenumber k,, is a function of the
direction of propagation and scales with € as Equation (11). This result is derived from
the linear theory results illustrated in Figure 3 which suggests that the channel for the
quasi-perpendicular cascade of magnetosonic-like turbulence may extend to &k c/w, > 1.
For case (c), quasi-perpendicular Alfvén-like turbulence, we assume the spectral form of
Equation (5) and predict that 2 < « < 3 in three-dimensional simulations or 1 < a < 2
in two-dimensional computations. We further predict that the dissipation wavenumber
corresponding to the breakpoint wavenumber of such turbulence spectra should increase

with increasing turbulent energy and should scale approximately as Equation (13).

The results described here have been obtained from theory derived from
the non-relativistic Vlasov equation. For strongly relativistic plasmas, we might
expect major changes in the physics. But if we assume that relativistic effects
are caused by an increase in the plasma temperature, then it is likely that the
first physical consequences of such an increase would be associated with the
relativistic increase in mass. Noting that our assumption of m. = m, precludes
the appearance of any m./m, factors in our theory, we speculate that scaling
relations for weakly relativistic plasmas should not significantly differ from the

results described here.
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These predictions, and the predictions of Gary & Karimabadi (2009), can be tested by
the use of PIC simulations, and we anticipate that such computations will begin soon. Before
considering our predictions, however, the simulations should first address the fundamental
assumptions of our model; if these are not satisfied, then there is no foundation upon which
our predictions may stand. The most important pillars of our model are: (I) the assumption
that turbulence can be separated into three, distinct, relatively independent categories,
(IT) the assumption that each category of turbulence can be represented as an ensemble of
weakly interacting modes which are approximately described by linear dispersion theory,
(IIT) the assumption that weakly-damped cascading turbulence corresponds to a magnetic
fluctuation spectrum with a power-law wavenumber dependence, and (IV) the assumption
that strongly dissipated turbulence corresponds to a magnetic fluctuaiton spectrum that
decreases more rapidly than any power law in wavenumber. We look forward to early
PIC simulations of homogeneous turbulence in collisionless electron-positron plasmas. We
further anticipate that these simulations will bring new insights to the study of

how such turbulence heats collisionless astrophysical plasmas.

We ackowledge useful discussions with Joe Borovsky. The Los Alamos portion of
this work was performed under the auspices of the U.S. Department of Energy (DOE).
It was supported by the Magnetic Turbulence and Kinetic Dissipation Project of the
Laboratory Directed Research and Development Program at Los Alamos, and by the Solar
and Heliospheric Physics SR&T and the Heliophysics Guest Investigators Programs of
the National Aeronautics and Space Administration. Work at UCSD was supported by
NSF-GEM grant ATM-0802380.
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Fig. 1.— The linear damping rates of the Alfvén-like (dashed line) and magnetosonic-like
(solid line) modes in electron-positron plasmas as functions of the angle of propagation

relative to B,. Here 5, = 0.10 and kc¢/w. = 0.10.

Fig. 2.— The linear damping coefficient A(f.) defined by Equation (2) for the Alfvén-like

mode in electron-positron plasmas. Results here apply at least on the domain 60° < 6§ < 85°.

Fig. 3.— Linear theory results: The contours of v/|Q2.| = 107 and 102 for magnetosonic-
like (solid lines) and Alfvén-like (dashed lines) fluctuations in electron-positron plasmas in

k. versus k| space. Here 3, = 0.10.

Fig. 4.— Linear theory results: The parallel dissipation wavenumber k4 for both Alfvén-like
and magnetosonic-like fluctuations at £, = 0 as a function of 3, for 7/|2.| = —0.01 and
—0.001. The solid lines represent the scaling of the dissipation wavenumber with the electron

inertial length, whereas the dashed lines represent kjq scaled with the electron gyroradius.
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